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Abstract. In this paper it is shown that a large class of smooth mathematical programming problems 
can be converted into the standard forms to which the GOP algorithm applies. 
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Global  optimization of nonconvex programming problems has been an important  
topic in optimization theory and has generated significant interest in recent years. 

A new primal-relaxed dual method,  called the G O P  algorithm, is reported to be 
efficient for bilinear programming problems,  polynomial programming problems 

and rational polynomial  programming problems (see, for example,  Floudas and 

Visweswaran,  1990, 1993; and Visweswaran and Floudas, 1992, 1993). The 
method,  however,  can be applied only after the problem has been reformulated in 
the following standard form: 

min f ( x ,  y)  ( G O P )  
x , y  

subject to gi(x, y)  <~ O , hj(x,  y) = cj , x ~ X , y ~ Y 

with l ~ < i ~ < k ,  i ~ < j ~ p ,  

where X and Y are non-empty compact  convex sets in R n x  R m (n, m >I 1), 

f ( ' ,  y),  &(-, y) ,  f ( x ,  .) and gi(x, .) are differentiable convex functions for any fixed 
y E Y or x E X, and h(x,  y)  is bilinear. Hence  this method was not considered 
applicable to a very broad class of mathematical  problems. In this paper  we show 

that  a large class of smooth mathematical  programming problems can actually be 
reformulated in this form by a simple transformation of variables. 

Let  X be a non-empty compact  convex set in R n. Let  F(x) and Gi(x ) 

(1 ~< i ~< L )  be continuous functions on X. For sake of simplicity we will assume 
that  F G i E C2(Rn).  We now consider the following optimization problem: 
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min F(x) ,  subject G~(x) <~ 0 and x E X with 1 ~< i ~< L .  (GMP)  
x 

It is clear that (GMP)  represents a large class of mathematical  programming 

problems.  B e f o r e  giving our result we mention a simple fact in per turbat ion 
theory: 

L E M M A  1. Let A(x)  be a continuous symmetric n x n matrix on X.  Then there 
exists a o > 0 such that B(x)= aI  + A(x) is a positive definite matrix on X for 
a >1 ao, where I is the n x n unit matrix. 

Proof. Note that B ( x ) / a = I + A ( x ) / a  and that IIA(x)/sIIL~--'O as s--->oo. 
Therefore  the determinant  and all sub-determinants of B(x) / s  will converge to 
the corresponding those of I as s---> ~. Thus there is s 0 > 0 such that B(x ) / s  is 

positive definite for a / >  a 0 and so is B(x). [] 

T H E O R E M  1. Let X,  F and G i (1 <~ i <- L )  satisfy the conditions in (GMP).  Then 
there are functions f ,  & (1 <~ i <~ L)  and hj (1 <- j <~ n) in C 2 (X  x X ) ,  satisfying the 
conditions in (GOP) such that the (GMP) can be equivalently reformulated in the 
following standard form: 

min f(x,  y) 
x , y  

subject t o  gi(x, y) <~ O, hi(x, y) = O, x E X and y E X ,  

with l ~ < i ~ < L ,  l ~ < j ~ < n .  

Proof. Select first an a > 0 from Lemma  1 such that aI  + H(F)(x) and aI  + 
H(G~)(x) are positive definite matrices on X, where H(F) and H(Gi) are the 

Hessian matrices of the functions F and G~ on X. Now let f (x,  y ) =  F(x)+ 
axx r - axy T, &(x, y) = Gi(x ) + axx r - axy r for 1 ~< i ~< L and hi(x, y) = xj - yj 
for 1 ~ j  ~< n. It follows that f ,  g~ and hj satisfy the conditions in ( G O P )  as for a 

fixed y the Hessian matrix of f or g~ (1 ~<i ~ L )  is positive definite on X. 
Moreover  it is clear that the problem (GMP)  can be equivalently rewritten as 

min f(x, y) 
x , y  

subject to g~(x,y)<-O, h j ( x , y ) = O ,  x E X  and y E X  

with l<~i<~L,  I<~j<~L, 

This is the conclusion of the theorem.  [] 

It  is important  to choose a in the numerical computation.  This can be solved by 
noting that the matrices H(F) and H(Gi) (1 ~ i ~< L )  (the Hessian Matrices of F 
and Gi) can be decomposed as Q D Q  T and QiDiQ r, where D and Dg are the 
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diagonal matrices whose diagonal elements are the eigenvalues of H(F) and 
H(Gi), and QQr= QiQf =I. It follows from this fact that a can be chosen as 

a = -min  (0, h(x), h i ( x ) , . . . ,  hL(x)}, 
x E X  

where A(x) and Ai(x) are the minimum eigenvalues of H(F) and n ( G i )  at  x. 
A special instance where this theoretical result was applied and a was explicitly 

obtained is the case of rational polynomials that arise in the structure de- 
termination of clusters of atoms and molecules (see Maranas and Floudas, 1992). 

Note also that a number of related penalty type transformations that reduce 
combinatorial problems, bilinear programming, and linear complementarity 
problems to other forms are reported in chapter 3 of Pardalos and Rosen (1987). 

From this result it is clear that the GOP method is actually applicable to very 
broad mathematical programming problems. All useful finite dimensional prob- 
lems in practice are virtually covered. 
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